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The objective of this research was to demonstrate the feasibility of this method to differentiate the
geographical growing regions of coffee beans. Elemental analysis (K, Mg, Ca, Na, Al, V, Cr, Mn, Fe,
Co, Ni, Cu, Zn, Mo, S, Cd, Pb, and P) of coffee bean samples was performed using ICPAES. There
were 160 coffee samples analyzed from the three major coffee-growing regions: Indonesia, East
Africa, and Central/South America. A computational evaluation of the data sets was carried out using
statistical pattern recognition methods including principal component analysis, discriminant function
analysis, and neural network modeling. This paper reports the development of a method combining
elemental analysis and classification techniques that may be widely applied to the determination of
the geographical origin of foods.
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The determination of geographic origin of commodities and
food products is becoming an increasingly active research area.
The increasing demands on the agrifood industry from free-
trade, globalization, and changing technology only further the
drive to determine the authenticity of foods (1). This includes
both geographic authenticity and adulteration of foods. Financial
incentives continue to drive retailers/resellers to misidentify the
geographic origins of commodities (2) and food products (3-
7). The determination of geographic origin through chemical
analysis coupled with sophisticated data classifying techniques
is timely. Although recently publications in this area have begun
to develop, geographic classification has focused on processed
foods, most especially wines (3) and juices and to a much lesser
extent drugs of abuse (5), cocoa (6,7), and olive oil. The
objective of this study was to determine the feasibility of using
a multielement analysis, by ICPAES, a single-analytical instru-
ment, combined with statistical modeling methods (2) for
differentiating (with the goal of ultimately determining) the
geographic origin for coffee beans. Here we present data from
eight different sites on three continents, representing a total 160
× 18 data set; nearly 3000 chemical parameters were measured.

Over two-thirds of all the research literature on geographic
origin of commodities involves the analysis of vitamins or other
organic molecules (amino acids, triglycerides, volatile aromatic
compounds, etc.). Some success (60-90% correct classification)
has been reported using vitamin and/or amino acid assays to
determine geographic origin (8-13). However, a shortcoming

of using vitamins (or other organic compounds) is their
susceptibility to degradation (including enzymatic changes) from
the time of harvest through storage to the time of analysis.
Storage conditions may be especially important for some vitamin
assays; for example, vitamin E is light sensitive, and changes
in vitamin E content during storage have been reported (14). It
is important, therefore, if one wants to develop a technique that
will ultimately be used to determine the geographic origin of
unknown samples, that effects from storage conditions be
minimized. This is also important because coffee beans are
processed and organic chemical profiles are likely to be
especially susceptible. Therefore, a method that is robust and
independent of variations from storage conditions is most
desirable. The use of minerals and trace elements is therefore
powerful because trace elements are significantly more stable
in the commodity versus vitamins or some other types of organic
compounds.

It is recognized that mineral and trace metal compositions of
fruits and vegetables are a distorted reflection of the trace
mineral composition of the soil and environment in which the
plant grows (15). The soil-plant system is highly specific for
different elements, plant species, and environmental conditions.
Under most conditions, a trace element present in the vegetable/
fruit must have existed in the rooting zone of the plant, at least
in a slightly soluble form. A trace element must also pass
through at least one cellular membrane in its movement from
soil to plant. The selectivity of these processes of mineral
bioaccumulation within the vegetable varies with different trace
elements, with different plants, and with the unique environment
in which the commodity is grown.

The determination of geographic origin of wines has been
an active area of research for some years (8, 16-19). Most of
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these studies involve the chemical determination of organic
molecules, most commonly some combination of amino acids.
Accuracy rates of prediction fall in the 73-91% range (8,16-
19). However, an excellent study by Day et al. (20) combined
the analyses of2H NMR with multiple elemental and isotopic
ratio determinations; here the technique classified wine samples
with g99% accuracy. This approach, however, requires the use
of several instruments including SNIF-NMR, elemental analyzer
IRMS (isotope ratio mass spectrometry), FAAS (flame atomic
absorption spectrometry), ETAAS (electrothermal atomic ab-
sorption spectrometry), and ICPAES (inductively coupled
plasma atomic emission spectrometry). In addition, sophisticated
techniques are necessary for the determination of the five
isotopic ratios used. Overall, many authenticity studies are
survey in nature (<30 samples), and therefore general conclu-
sions concerning the effectiveness of these techniques should
be prudent.

The purpose of this study is to determine the feasibility to
differentiate coffees grown in the three different major regions
of the world, Central and South America, East Africa, and
Indonesia. In addition, the feasibility of further separation of
these regions was investigated. The “coffee belt” is a globe-
encircling geographic region between latitudes 30° N and 30°
S, where coffee trees grow from sea level to 2000 m. Within
the coffee-belt there are large variances in coffee quality. In-
cup taste testers are used to recognize country of origin;
however, testers cannot identify reliably a large number of coffee
origins. Most importantly, the opinions of taste testers are
subjective and often not always unanimous. In cases of
arbitration (e.g., coffee producers, coffee traders, and coffee
consumers) disagreements occur frequently. Import/export, legal
implications, and financial concerns make determining country
of origin for coffee important, with over $50 billion in U.S.
dollars in coffee retail sales. Coffee is currently exported by
more than 50 countries and on the international trade market
ranks second only to petroleum, providing livelihood for over
100 million people worldwide (21, 22). Consequently, coffee
producers and traders are motivated to discover more objective
(chemical) techniques for determining the geographic origin of
coffee.

For instance, there is a consistent trend of price differential
for coffee based on quality, taste, and body (23). The price
differential is dramatic; some of the most expensive coffees sell
for $35/pound (U.S. dollars), whereas some of the least
expensive coffees sell for $1/pound. This has led some people
to pass off cheaper coffee, or a mix of coffees, as pure expensive
types. Recently, Hawaiian coffee growers settled a lawsuit
alleging distributors sold cheaper South American beans as
genuine Kona coffee from Hawaii (24). For example, it is
estimated that 20 million pounds of Kona coffee is sold annually,
whereas only 2 million pounds are produced (24). Protecting
market share, reputation, and consumer confidence to pay a
premium for specific growing regions of coffee is meaningful
to the industry. The misidentification of coffee by unscrupulous
resellers/retailers can affect future consumer choices in both the
short and long term as well as deceive the consumer. Further
lasting effects include jeopardizing consumer confidence in the
quality of coffee (25), if coffees have been unknowingly
switched with lower quality beans, and affecting the consumers’
willingness to pay premium prices for coffee. Therefore,
developing a method that can identify the origin of coffee is
important to protect the coffee industry.

Surprisingly, there are very few studies reported for the
determination of origin of coffee (26). Much of the existing

literature on the chemical composition of coffee (green beans,
roasted beans, or prepared) has focused on food quality aspects
or adulteration with noncoffee products (26). Food quality
chemical analyses are subsequently dominated by volatile
headspace techniques for organic compounds. This type of
analysis is inappropriate for geographic authenticity as these
techniques are subjective to the storage conditions and brew
techniques, and the analysis technique itself influences the
“aroma” profile of volatile headspace analyses (26). In addition,
these types of techniques may tend to be too subjective or too
laboratory specific to provide the industry with the necessary
definitive, robust, reproducible method needed for cases in
dispute. A thermogravimetric chemical ionization mass spec-
trometry technique was not successful in differentiating 13 green
coffees (27). A study using a suite of metals (and four
instruments) on 10 coffee samples found some differences, but
the study was very sample limited so conclusions should be
prudent (26,28). Also, one of the four methods used was neutron
activation analysis, which requires an instrument not routinely
available to a wide research audience. We report on the
feasibility of using an elemental analysis method to determine
the geographic growing origin of coffee from eight different
sites, including all three major coffee-growing regions in the
world. The method presented requires only one instrument, is
flexible, and demonstrates the feasibility to differentiate coffee
beans from different geographic origins with samples that are
likely to be in dispute. The method presented here is not
susceptible to storage conditions (2), requires only small
samples, and uses common automated equipment.

MATERIALS AND METHODS

Reagents.The sources of chemicals and reference materials were
as follows: concentrated, nitric acid trace metal analysis grade (J. T.
Baker, St. Louis, MO); elemental stock standard solutions (J. T. Baker);
reference materials, NIST 1575 pine needles, NIST oyster tissue 1566a,
NIST rice flour 1568a, NIST 1577b bovine liver, NIST 8433 corn bran
(National Institute of Standards and Technology, Gaithersburg, MD);
NRC TORT-2 lobster hepatopancreas (National Research Council
Canada, Institute National Measurements Standards, Ottawa, ON,
Canada).

Apparatus. The inductively coupled argon plasma atomic emission
spectrometer (ICPAES) was equipped and set up as follows: model,
Leeman 1000 ICPAES; power, 1.1 kW; coolant, 16 L/min (Lpm);
nebulizer, 41 psi; auxiliary flow, 0.20 L/min; pump rate, 1.0 mL/min;
scan intergration time, 0.25 s; Mn1 peaking wavelength; acid flexible
tubing, 0.030 i.d. mm, wavelengths and background corrections are
given inTable 1 (29, 30). Temperature controller/digester used was a
digestion system 40, 1016 Digester, and Autostep 1012 controller
(Tecator). It was fitted with an aluminum adapter plate 3 mm thick
with 40 17-mm holes on top overlaid on the heater block. Measurements
were made at the wavelengths listed below for the macro- and
microelements; upper and lower background corrections are used as
listed in Table 1.

Sampling, Preparation, and Analysis.Samples were purchased at
a local coffee outlet. All samples were roasted coffee beans (as
purchased by the coffee outlet). Four samples from Central and South
America were purchased and identified as being from Costa Rica,
Colombia, Panama, and Guatemala. Two samples from Indonesia were
identified as being from Sulawesi and Sumatra. Two samples from East
Africa were identified as being from Kenya and Ethiopia.

Each coffee was analyzed as the roasted bean. No further preparation
of the sample was required (i.e., no further drying). A∼1.0 g sample
was taken, representing four to six beans, and the sample was digested
with 3.0 mL of nitric acid (trace metal grade) in a 10 mL graduated
Kimax culture tube on a programmed heating block. The samples were
allowed to react for∼4-8 h in a hood at ambient temperature. Then
the samples were digested using a heating block (programmable digester
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may be used). The samples were heated to 180°C for 3-4 h. Digestion
is confirmed to be complete when no nitrous oxide gases are evolved
(i.e., orange gas production). Samples are diluted with type 1 water
(18 Mohm‚cm) and mixed thoroughly using a vortexer. Analysis is by
ICPAES.

Quality Control. Each analytical batch contained a minimum of
25% quality control samples, including check standards, duplicates,
spikes, and standard reference materials (SRM). Calibration curves
consisted of three to four standards each, with correlation coefficients
of >0.98. During the course of the study>50 SRM samples were
analyzed; SRM were dominantly plant matrices when available. Typical
percent standard deviation (% SD) was<10%, although analytes close
to method detection limits (MDL) had higher % SD. Spike recoveries
and check standards were typically within(10% of their true value.

COMPUTATIONAL ANALYSIS

The data were analyzed to explore the feasibility of classifying
coffee samples according to geographic origin. Multivariate
pattern recognition methods were used to analyze the data to
determine if the geographic origin of a sample could be
characterized by the proportions of its trace metal constituents.
The methods employed include principal component analysis,
canonical discriminant function analysis, quadratic discriminate
function analysis, linear discriminate function analysis, and
neural network modeling. The computational analysis was
similar to that done by the authors to determine the feasibility
of geographic classification of potatoes (2). Principal component
analysis (PCA) and canonical discriminant analysis (CDA) are
variable reduction methods and were used for exploratory data
visualization to determine to what extent we could discern
differentiation of the samples according to geographic origin
by looking at appropriate one- and two-dimensional displays
of the data. The other methods are model classifier methods:
known samples are used to build or “train” a classification
model. The trained model will then make a prediction about
the geographic origin of an unknown sample based on the
proportions of trace metals found in the sample.

Visualization. (a) Principal Component Analysis.PCA
generates principal components that are linear combinations of
the original variables. The first principal component (PC)

summarizes the maximum possible variation that can be
projected onto one dimension, the second PC captures the
second most, and so on. The principal components are ortho-
gonal in the original space of variables, and the number of
principal components can equal the number of the original
variables. However, it is sometimes the case that a large
percentage of the total variation can be explained by the first
few principal components, effectively reducing the number of
variables needed to describe variation among individual samples.
In this case, plotting the samples with respect to one or two
principal components facilitates one- or two-dimensional views
of how individual samples differ from one another (in the
variation sense). For a geographic classification task it is
desirable to have group differences explicitly manifest with a
low-dimensional view. However, this is not always the case
because this method measures variation in the elemental
concentrations in the samples but does not take into account
group (geographic origin) membership. To get the best possible
view of group clustering, we use CDA.

(b) Canonical Discriminant Analysis.CDA generates canoni-
cal variables, which are linear combinations of the original
variables, that describe the variation between prespecified classes
in a manner analogous to the way in which PCA summarizes
the variation among individual samples. CDA can effectively
reduce the number of variables and provide optimum low-
dimensional “views” of the data, which display the maximum
possible variationamong different groupsand the minimum
possible variationwithin the same group.CDA has been applied
to data for the purpose of geographical classification of potatoes
(2) and wine (20).

Classification Models.(a) Discriminant Function Analysis.
Discriminant function analysis here refers to a group of pattern
recognition classification methods that use known data to
determine a discriminant function, which can then be used to
classify unknown samples into predetermined classes. Two types
of discriminant functions were used for this study: a linear
discriminant function and a quadratic discriminant function.
Details of how each of these work can be found in the
description of the DISCRIM procedure in the SAS technical
manual (31).

(b) Neural Networks.Feed-forward back-propagation neural
network methods were also applied to the data in an effort to
classify samples according to geographic origin. A neural
network is “trained” using known samples by adjusting internal
parameters called weights so that an error measure of actual
versus predicted results is minimized. The trained model is then
used to classify unknown samples. Neural network models are
inherently very flexible and are able to model complex
boundaries between groups.

Usually, some measures must be taken to prevent the tendency
of neural networks to “overfit” the known training data. An
overfitted model will predict the training data well but may
perform poorly when new samples not used in the training set
are classified. One method is to use early stopping. The known
data is split into training and test sets. As the network is trained
using the training set it is periodically presented with the task
of classifying the test set. The network is saved when the test
set error is minimized (as opposed to when the training set error
is minimized). The idea is to ensure that the neural network
model will perform well when it is used to classify new samples
that it has never seen. This property is called generalization.
Further generalization improvements can usually be achieved
by employing a bootstrap aggregation (“bagging”) strategy (32).
Multiple networks are trained using randomly selected (sampling

Table 1. Wavelengths and Background Corrections for Macro- and
Microelements in Coffee Samples, Determined by ICPAES, and
Method Detection Limits

element
emission
λ (nm)

upper and lower
background correction

from emission λ

method
detection

limita (µg/g)

aluminum 308.215 none used 0.3
cadmium 214.438 0.047/0.036 0.04
calcium 317.933 0.053/none 0.17
chromium 206.149 0.026/0.049 0.12
cobalt 228.616 0.033/0.038 0.12
copper 324.754 0.041/0/038 0.07
iron 259.940 0.074/0.056 0.06
lead 220.353 0.034/0.025 0.5
magnesium 279.553 0.032/0.035 0.04
manganese 257.610 0.052/0/042 0.02
molybdenum 202.030 0.037/0.037 0.34
nickel 231.604 0.029/0.029 0.13
phosphorus 214.910 0.034/none used 0.5
potassium 766.490 none used 10
sodium 589.592 none used 1
vanadium 310.230 0.025/0.034 0.1
zinc 213.856 0.060/0.032 0.05

a Detection limits are from our typical plant analysis screen; subsequent
optimization for dry samples such as coffee beans would decrease detection limits
by a minimum of a factor of 4−6.
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with replacement) training sets, and final classification is
obtained by voting. This has the effect of reducing the high
variance inherent in neural networks, resulting in improved
generalization. Typically, if safeguarded against overfitting,
neural network models perform as well as or better than other
classification methods.

RESULTS AND DISCUSSION

Chemical Analysis.An important attribute of this approach
is that all of the chemical data can be determined with the use
of a single analytical instrument, ICPAES. Whereas other
geographic authenticity approaches require the use of several
instruments, this technique requires only a single, commonly
available automated instrument. In this study 18 elements were
determined, additional elements could be added, and unlike
chromatography techniques, spectroscopy data analysis requires
little analyst time or special expertise. In this approach, the data

are used directly from the ICPAES into the computational
models requiring no prior mathematical or interpretive data
analyses, as is often the case with other geographic authenticity
approaches.

The analytical technique is well suited to analysis of small
samples. A minimum of 500 mg can be used; 1 g was used in
this study. Dilution factors are minimized heresonly a factor
of 10 as compared to typical digestions that involve dilution
factors ofG50. This small dilution factor permits determination
of additional elements that would otherwise be below instrument
detection limits. In addition, as a pollution prevention mecha-
nism, this technique uses fewer reagents and thus reduces waste.

Of the 18 elements tested, 11 were routinely above the
detection limit (seeTable 2). Phosphorus, zinc, magnesium,
calcium, potassium, and sulfur had concentrations within 10%
of the overall mean. Therefore, individually none of these
elements alone appears to have discriminating power with the
geographic regions tested. Copper, sodium, manganese, and iron
have some discriminating power with the geographic regions

Table 2. Mean Concentrations and Standard Deviations of Dry Weight for 11 of the 17 Elements Determined in Roasted Coffee Beana

statistics, µg/g (ppm)growing
region P Zn Mn Fe Mg Al Cu Ca K S Na

Costa Rica av 1920 7.97 23 15 2203 13 18.1 1079 18570 1640 41.5
(n ) 20) SD 140 1.4 4.0 3 100 2 2.6 150 1190 55 7.0

Colombia av 1980 8.01 38 17 2268 19 17.2 1129 19170 1480 40.1
(n ) 20) SD 200 1.8 10 3 140 4 1.7 150 1380 130 11

Guatemala av 1960 8.03 25 13 2410 8 14.0 1234 19010 1640 28.9
(n ) 20) SD 180 1.4 5 2 140 1 2.3 290 8840 74 5.9

Panama av 1740 7.04 26 20 2174 3 16.8 997 18680 1500 9.6
(n ) 20) SD 90 1.8 4 5 110 2 1.8 170 1260 92 2.3

Ethiopia av 1860 7.82 21 12 2058 7 13.8 1013 19280 1450 20.1
(n ) 20) SD 150 1.9 4 3 130 2 0.9 140 1380 83 4.7

Kenya av 1710 7.15 39 15 2150 4.4 17.8 976 17500 1420 37.3
(n ) 20) SD 140 1.9 11 5 160 3 2.2 170 1030 97 10.0

Sulawesi av 2110 7.87 29 21 2347 13 12.5 934 19160 1431 1467
(n ) 20) SD 160 1.7 7 6 160 6.8 3.4 120 1090 124 5.3

Sumatra av 1940 6.51 19 31 2098 36 13.2 1141 19600 1490 10.60
(n ) 20) SD 210 1.1 5 7 110 13 2.0 190 1400 85 9.7

a Each mean represented 20 individual samples, a total of 160 samples. Data are not shown for molybdenum, cadmium, lead, cobalt, nickel, and chromium; these
elements had means that were either below method detection limits or near method detection limits that resulted in large standard deviations (>30%).

Figure 1. Concentration of aluminum in roasted coffee beans versus
geographic growing origin.

Figure 2. Concentration of iron in roasted coffee beans versus geographic
growing origin.
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tested, but one cannot determine origin with these elements
alone. However, more sophisticated computational analysis
indicates these data have value increasing modeling success (see
below). Aluminum ranged from 3 to 36µg/g, a factor of 12
difference between geographic regions (seeFigure 1). Iron
ranged from 12 to 31µg/g, a factor of 2.5 difference between
geographic regions (seeFigure 2). Manganese for all tested

samples ranged from 19 to 39µg/g, a factor of 2 difference
between geographic regions (seeTable 2). Copper for all tested
samples ranged from 12 to 18µg/g, which is a factor of 1.5
difference between geographic regions. Sodium for all tested
samples ranged from 10 to 41µg/g, a factor of 4 difference
between geographic regions. Although individually no element
is diagnostic of origin, by combining elements there is better
discrimination. For example, from a three-dimensional plot of
aluminum, sodium, and manganese, one can see that origins
are beginning to separate (seeFigure 3). With more dimensions
and modeling (see below), better separations are possible.

The ranges of all elements tested were in the same range as
for green coffee beans, indicating that the roasting process
probably has little effect on element concentrations (26, 28)
unlike organic compounds.

Aluminum, cadmium, phosphorus, and sulfur have not been
previously determined for origin determination in coffee beans.
Some elements determined here, such as Fe, did not show as
much discriminating power in green coffee beans as discovered
here (28). However, the error limits in the green coffee bean
study were typically a bit larger (e.g., 25% for Fe), such that
subtle differences may not have been revealed. In this same
study manganese was the most discriminating element, with a
difference of a factor of 2.5 seen between regions.

Another important result of the element concentration dis-
tribution is that no one region is responsible for all of the high
or low concentrations. For example, Costa Rica has the highest
average copper and sodium concentrations and the highest sulfur
concentration. Colombia has the highest zinc, and Guatemala
has the highest calcium and sulfur concentrations. Panama has

Figure 3. Chemical profile of three elements (Al, Na, and Mn).

Figure 4. Principal component one versus principal component two, for chemical profile of elements in roasted coffee beans from eight different growing
regions: r, Costa Rica; c, Colombia; p, Panama; s, Sulawesi; u, Sumatra; k, Kenya; e, Ethiopia. There are 41 observations that are hidden.
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the lowest average aluminum concentrations of the regions
tested. Ethiopia has the lowest iron and magnesium. Kenya has
the highest manganese and lowest potassium and sulfur con-
centrations. Sulawesi has the highest magnesium and the lowest
average copper and calcium concentrations. Finally, Sumatra,
of all the regions tested, is probably the most different, with
the lowest zinc, manganese, potassium, and sodium and the
highest iron and aluminum. Overall, with so many differences,
on the whole, the use of computational modeling with elemental
concentrations is powerful.

Seasonal variability was not investigated here. In another
study, with green coffee beans, although data were limited, over
three growing seasons, little variation was seen (28). We have
analyzed>2000 potatoes over several seasons and have also
seen little variation (2), although generation of databases for
each season is likely (and necessary) to ensure good predict-
ability of any model used routinely.

Computational Analysis. Introduction.A total of 160 coffee
samples representing eight geographic regions with 20 samples
from each were analyzed. Each sample was measured for the
proportions of 16 (Pb and Mo not used) trace elements present.
For initial data exploration PCA was applied to the data. To
adjust for different scales of measurement between trace
elements, the data were normalized by subtracting the elemental
means from each entry, and then each resulting difference was
divided by the corresponding standard deviation. Thus, each
trace element had an adjusted mean of zero and an adjusted
standard deviation of one.

Visualization. (a)Principal Component Analysis.PCA has
been applied to geographical classification applications of
various foods including processed orange juice (33), wine (18,
20), honey (34), and cocoa (6, 7). PCA demonstrates that a small

number of variables were not dominating total variability. Only
modest visual clustering was apparent when the data were
displayed with respect to the first two principal components
(see Figure 4). Similar results were seen from principal
component one versus three or principal component two versus
three (data not shown). This was not surprising because the first
principal component accounts for the maximum possible one-
dimensional projection of total variation of the individual points,
which does not necessarily correspond to the maximum variation
between classes. Better visual results were obtained with CDA
(discussed below).

(b) Canonical Discriminant Analysis.CDA was applied to
our data using eight defined classes. The data were plotted using
the first canonical variable alone, as shown inFigure 5. Figure
6 shows samples plotted with respect to the first and second
canonical variables. Both figures display reasonably good visual
separation of the samples based on geographic origin.

Classification Models.From each of the eight geographic
regions, 4 samples (from 20) were randomly selected to form a
test set of 32 samples. The remaining 128 samples were used
as the training set for the classification models. Once trained,
each model was then used to classify the 32 “unknown” samples
in the test set. Also, each model was presented with the training
set for classification. Classification performances for each
classification model are discussed below.

(a) Discriminant Function Analyses.The linear discriminant
function model classified 23 of 32 samples (∼72%) in the test
set correctly and correctly classified 90 of 128 samples (∼71%)
in the training set. The quadratic discrimination function model
classified 23 of 32 (∼72%) samples in the test set correctly
and correctly classified 102 of 128 samples (∼80%) in the
training set.

Figure 5. Plot of the first canonical functions (country codes are given in the figure). This simplified visual representation demonstrates the separation
of regions; any overlap viewed in this one-dimensional representation is not indicative of any intractable classification task. All 16 available dimensions
are utilized (see text).
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(b) Neural Network Analysis.Fifty neural network models
were trained using the training set. Each of these models was
safeguarded to some extent using an early stopping strategy.
That is, to construct each of the 50 models, the training set of
128 samples was randomly split into two parts: 77 samples in
a “local training” set and 51 samples in a validation set. (Each
model had its own random partitioning of the training set.) The
weight parameters that determine a given model were saved at
a point where an error measure on the validation set was
minimized. Once trained, the 50 models were aggregated to form
a composite model. The composite model prediction for a given
sample is determined by voting with the 50 individual models.
The composite model classified 26 of 32 samples (∼81%) in
the training set correctly and correctly classified 110 of the 128
samples (∼86%) in the training set.

Within the framework of this study it appears that the
geographic origin of coffees may be determined by their
chemical profile. Statistical analysis revealed groupings between
the three major geographic regions of coffee production in the
world, Indonesia, East Africa, and Central/South American.
Although differences in elemental concentrations were deter-
mined, simple inspection of elemental concentrations cannot be
used to differentiate growing origin. Use of neural network
models and discriminate function analysis both successfully
differentiated coffees relative to their subregional growing origin
(70-86% successful classification). Work is in progress to
further substantiate the effects of seasonal and coffee variety
influences. As well, further classification breakdown of subre-
gions is currently underway in our laboratory.
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